SITE:	SANGAMO
BREAK: _	13.8
OTHER:	v. l

Past Remedial Actions

- Solid Waste Removed from Nix and Dodgens Sites (1979-80)
- Sangamo Weston and EPA Signed Administrative Order on Consent (June 1987)
- Completed Phase I Remedial Investigation (1989)
- Completed Draft Feasibility Study for Presentation to Public (1990)

SANGAMO WESTON PLANT SITE REMEDIAL INVESTIGATION AREAS

()

Remedial Investigation Findings at Sangamo Weston Plant Site

- Total Estimated Volume of Waste Contained Within Plant Site Is 28,650 Cubic Yards
- Principal Waste Types Include:
 - Aluminum Hydroxide Sludge
 - Capacitor Debris
 - Contaminated Soil
 - Solvents

Remedial Investigation Findings at Sangamo Weston Plant Site (Continued)

- Principal Constituents Found as a Result of Testing Are:
 - PCBs
 - Volatile Organic Compounds
- Volatile Organic Compounds Detected in Groundwater
- PCBs Detected in Groundwater at:
 - Wastewater Treatment Facility
 - Area G
 - Area B

Remedial Investigation Findings at the Breazeale Site

- Estimated Volume of Waste Exceeds 2500 Cubic Yards in Each Trench
- PCBs Are Principal Constituents in Waste
- Volatile Organic Compounds Detected in Groundwater
- No PCBs Detected in Groundwater

Remedial Investigation Findings at the Nix Site

- Estimated Volume of Waste Is 20 Cubic Yards
- Principal Waste Types Are:
 - Capacitor Debris
 - Contaminated Soil
- PCBs Are Principal Constituents in Waste
- PCBs Are Not Present in Groundwater

Remedial Investigation Findings at the Dodgens Site

- Estimated Volume of Waste Is 100 Cubic Yards
- Principal Waste Types Include:
 - Capacitor Debris
 - Contaminated Soil
- PCBs Are Principal Constituents of Waste
- Volatile and Semi-Volatile Compounds Detected in Groundwater
- PCBs Are Not Present in Groundwater

Remedial Investigation Findings at the Cross Roads Site

- Estimated Volume of Waste Is 400 Cubic Yards
- Principal Waste Types Include:
 - Capacitor Debris
- Principal Constituents of Waste Are:
 - PCBs
 - Volatile Organic Compounds
- PCBs Are Not Present in Groundwater
- Small Amounts of Volatile Organic Compounds in Groundwater

Remedial Investigation Findings at the John Trotter Site

- Estimated Volume of Waste Is 100 Cubic Yards
- Principal Waste Types Include:
 - Capacitor Debris
 - Contaminated Soil
- Principal Constituents of Waste Are:
 - PCBs
 - Volatile Organic Compounds
- PCBs and Volatile Organic Compounds Not Present in Groundwater

Remedial Investigation Findings at the Welborn Site

- Estimated Volume of Waste Is 300 Cubic Yards
- Principal Waste Types Include:
 - Capacitor Debris
 - Contaminated Soil
- Principal Constituents of Waste Are PCBs
- One Volatile Organic Compound Detected at One Groundwater Sampling Location
- PCBs Are Not Present in Groundwater

Evaluation of Remedial Alternatives

- Overall Protection of Human Health and the Environment,
- Compliance with Applicable or Relevant and Appropriate Requirements (ARARs),
- Long-Term Effectiveness and Permanence,

Evaluation of Remedial Alternatives (Continued)

- Reduction of Toxicity, Mobility, and Volume,
- Short-Term Effectiveness,
- Implementability,
- Acceptance by the State,
- Acceptance by the Community, and
- Cost

SUMMARY OF REMEDIAL ALTERNATIVES

Those Which:

- 1. Require No Action
- 2. Require Little or No Treatment and Restrict Ground Water Use
 - 3. Minimize Need for Long-term Management and Restrict Ground Water Use

SUMMARY OF REMEDIAL ALTERNATIVES - Cont'd

Those Which:

4. Include Treatment, Require Long-term Management, and Restrict Ground Water Use

5. Minimize Need for Long-term Treatment, and Require Ground Water Treatment

6. Require Long-term Management and Ground Water Treatment

2. Alternatives Involving Little or No Treatment

Alternative 2 • Implement Institutional Controls

Alternative 3 • Contain Solids

Alternative 4 • Contain Soils and Sludge: Dispose of Wastes Off-Site

Alternative 5 • Dispose of Solids On-Site

Alternative 6 • Dispose of Solids Off-Site

(All of These Restrict the Use of Groundwater)

3. Alternatives That Minimize the Need for Long-Term Management

Alternative 8 • Treat and Dispose of Solids On-Site

Alternative 10 • Treat and Dispose of Solids Off-Site

(These Restrict the Use of Groundwater)

Treatment Technology Options

- Thermal Destruction
- Thermal Separation
- Glycolate Dechlorination
- Stabilization/Solidification

4. Alternative That Includes Treatment and Requires Long-Term Management

- Alternative 13 Excavate and Treat Active and Inactive Lagoon Sludge
 - Restrict the Use of Groundwater

5. Alternatives That Minimize the Need for Long-Term Treatment

Alternative 7 • Dispose of Solids On-Site: Treat Groundwater

Alternative 11 • Treat and Dispose of Solids On-Site: Treat Groundwater

Alternative 12 • Treat and Dispose of Solids Off-Site:

Treat Groundwater

(These Alternatives All Include Extraction and Treatment of Groundwater)

6. Alternative That Requires Long-Term Management

- Alternative 9 Limited Action on Soils
 - Treat Soil In-Situ
 - Treat and Dispose of Solid Wastes Off-Site
 - Treat and Dispose of Sludge On-Site